
2.2 Linear Models 17

(x1,f(x1))

(x2,f(x2))

(x1,f(x1)) (x2,f(x2))

(x3,f(x3))
(x4,f(x4))

Figure 2.1 Left: Graph of a strictly convex function. The chord (i.e. orange line segment) between any pair of
points of the graph lies strictly above the graph (blue curve). Right: graph of a convex but not strictly convex
function. The chord between (x3, f (x3)) and (x4, f (x4)) is not below the graph, but not strictly above it either.

For a function f (x) on R, this necessary and sufficient condition is equivalent to require that the second
derivative of f be positive. This can be interpreted as the need for a function to show a positive (upward)
curvature at any point in order to be convex. A function is strictly convex if:

∇2 f (x) � 0, ∀x ∈ dom(f). (2.3)

For a function f (x) on R, this is equivalent to require that the second derivative of f be strictly positive.
Note that this condition for strict convexity is sufficient but not necessary. A function failing to satisfy
this condition might still be strictly convex4.

Why Convexity?

In an optimization problem, the fact that the objective function f (x) is convex guarantees that it has a
unique optimal value f ∗(x). It is thus possible to globally solve the problem on its whole domain. This
is an advantage with respect to non-convex optimization that might get stuck into local optima. The
strict-convexity of an objective function furthermore guarantees that this optimal value can be obtained
only by a single combination of the function inputs:

6 ∃ x1, x2 s.t. f (x1) = f ∗(x) ∧ f (x2) = f ∗(x) ∧ x1 6= x2.

2.2 Linear Models

This section defines linear models for classifying samples (points, examples) in a binary context, where
a point belongs to one out of two classes. In this work, most classification tasks are binary. The multi-
class setting is only addressed in the last section of Chapter 10. By multi-class, we mean more than two
classes. By default, from a k-classes problem, it is possible to define k× (k− 1)/2 one-against-one binary
classification tasks or k one-against-the-rest binary classification tasks. All binary techniques described
in this chapter are thus applicable to multi-class problems.

4A function f can also be m-strongly convex. This is the case if the necessary and sufficient condition ∇2 f (x) � mI is met, with
m > 0 and I the identity matrix. So every strongly convex function is also strictly convex. The concept of strong convexity is
however not required in the text.

2.3 Statistical Learning 19

learning is to choose a decision function f : X → Y within a space of functions F . For classification
based on linear models, choosing f comes mainly to choose the right hypothesis h within the space of
hypotheses H, i.e. the right hyperplane. Choosing the hyperplane is the learning process. But what
would make a good choice?

2.3.1 Loss Functions

A loss function L is generally used to measure the quality of a predictive model. In most cases, loss
functions tell how bad a model is rather than how good it is. The higher the value of the loss, the poorer
the model. To provide such an evaluation, a loss function needs both the output of the learned model
ŷ = f (x) or its decision value h(x), as well as the true value to predict, y. It is typically computed for
every element of a set of points, then averaged. We discuss here four well known loss functions. Three
of them are mainly used for classification: the 0/1-loss, the hinge loss and the logistic loss. The fourth
one, the square loss, is more related to regression problems. It is nevertheless discussed here since it is
used in several models covered by this book. Those four loss functions are pictured in Figure 2.2.

−4 −2 0 2 4

0
1

2
3

4
5

6

yh(x)

Lo
ss

Figure 2.2 Four loss functions: The 0/1-loss (orange), the hinge loss (dashed blue), the logistic loss (blue) and the
square loss (black).

The 0/1-loss L01 simply counts one if the prediction is wrong, and zero otherwise. An expression
directly translating this behavior is:

L01(y, f (x)) =

{
0 if y = f (x),

1 if y 6= f (x).
(2.7)

The 0/1-loss is a step function. It has the drawbacks of being not continuous and not convex, making
difficult its optimization. For comparison purposes, it can be rewritten as a function of yh(x):

L01(yh(x)) =
1− sign(yh(x))

2
. (2.8)

The hinge loss Lhinge is defined by:

Lhinge(yh(x)) = max(0, 1− yh(x)). (2.9)

2.3 Statistical Learning 21

Figure 2.3 Left: The VC dimension of hyperplanes in 2 dimensions is 3. Right: Four points cannot be separated
into two classes in all 2d = 4 possible ways using hyperplanes. For example, the set of two points in the dashed
shape cannot be separated from the two other points by a hyperplane.

Empirical Risk

Since the minimization of the functional risk (2.14) is most of the time not tractable, the empirical risk
may be minimized instead. The empirical risk is the value of the loss computed only on the available
training set of size n:

Remp(h) =
1
n

n

∑
i=1
L(yi, h(xi)). (2.15)

If L andH are chosen adequately6, it becomes possible to find the model hemp that minimizes Remp:

hemp(x) = argmin
h∈H

Remp(h). (2.16)

This is called the empirical risk minimization principle (ERM principle).

Overfitting

Without entering the details of statistical learning theory, minimizing the empirical risk as such is not
a satisfactory condition to obtain models with good generalization performances. Without restricting
H (without an inductive bias), a model cannot learn anything except the training data itself. This phe-
nomenon is known as overfitting. A model behaving perfectly on the training data, and returning a
random value for other input values is a minimizer of the empirical risk (2.15), but is clearly not what
one would expect as the result of a learning process. Such a model overfits the training data. On the other
extreme, restricting too much H could prevent the learning process to choose h close enough to h0, the
minimizer of the functional risk (2.13). The next section introduces some more concepts and explains
how to adequately choose an inductive bias.

2.3.3 Regularized Risk

An indicator function separates a given set of points into two subsets: those for which this indicator
takes the value 1, and those for which it takes the value 0. Most binary classification models are indicator
functions, or real functions approximating indicator functions.

6In our case,H is restricted to the family of hyperplanes.

24 Chapter 2. Classification

Figure 2.4 Left: Examples of separating hyperplanes in 2 dimensions. Separable classes can be discriminated
by an infinite number of hyperplanes. Right: A maximum margin hyperplane. The points on the margin are the
support vectors. For separable classes, the maximum margin hyperplane is unique.

without error and the distance M between the hyperplane and the closest points on each side of it is
maximal. This is illustrated in Figure 2.4 (right). The distance between any point x and the hyperplane
h of parameters w is:

|h(x)|
||w||2

. (2.21)

The points for which the distance to the hyperplane is exactly equal to the margin M are called the
support vectors (SV) of the decision boundary. Those are the closest points to the hyperplane. They
correspond to the circles in Figure 2.4 (right). The margin can thus itself be defined in terms of the
support vectors:

M = min
i

yih(xi)

||w||2
∀i ∈ {1, ..., n}, (2.22)

and this margin has to be maximized with respect to the hyperplane parameters. This leads to the
following minimax problem:

max
w

min
i

yih(xi)

||w||2
∀i ∈ {1, ..., n}. (2.23)

This problem is undetermined: an infinity of equivalent solutions in terms of w could be found (each
solution being a multiple of another). We can arbitrarily fix the distance of the closest points to the
hyperplane equal to one unit of the norm of w:

yih(xi)

||w||2
=

1
||w||2

∀i ∈ SV. (2.24)

This is equivalent to fix the margin to one unit of the norm of w. Consequently, for all points (either
support vectors or not):

yih(xi) ≥ 1 ∀i ∈ {1, ..., n}. (2.25)

SVM Primal

The maximization of the margin in Equation (2.22) comes then to minimize its denominator (||w||2)
under the constraints defined above in Equation (2.25). For convenience in further developments, ||w||2
is replaced by 1

2 ||w||22, leading to an equivalent solution. This is called the SVM primal problem:

argmin
w

1
2
||w||22, (2.26)

subject to
yih(xi) ≥ 1 ∀i ∈ {1, ..., n}. (2.27)

28 Chapter 2. Classification

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

P(y=1)

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h(x)

Figure 2.5 Left: The logit function. Right: The logistic function. The dashed line represents the decision threshold
(a probability of 0.5 to belong to any class).

can be done in many ways and a good review on the topic is the work of Minka (2007). Most techniques
minimize, via different procedures, the logistic loss over the set of available points:

n

∑
i=1
Llogistic(yih(xi)) =

n

∑
i=1

log
(

1 + exp−yi〈xi ,w〉
)

. (2.44)

This loss is the negative log-likelihood of Equation (2.42) over all available points. Minimizing it comes
thus to identify the model that best fits the data.

2.5.1 SVM and L2-Regularized Logistic Regression

SVM have been successfully used in many applicative contexts and are well principled. Logistic re-
gression on the other hand offers a nice probabilistic interpretation. SVM is naturally regularized while
logistic regression, as such, is not. Logistic regression has however been extended, mainly with an L1

regularizer, leading to the generalized lasso (Roth, 2002), another example of the loss & regularizer pat-
tern of Equation (2.20). The L1 regularizer induces model sparsity with respect to the input features.
The next chapter details such approaches providing feature selection embedded within classification.

Logistic Ridge Regression

Another classification model is the L2-regularized logistic regression, also known as logistic ridge re-
gression. The L2 regularizer generally offers model robustness by penalizing large values of any wj but
it does not induce sparsity with respect to the input features as the L1 regularizer does. We show here
that linear SVM is an approximation of the L2-regularized logistic regression. The objective function of
the L2-regularized logistic regression is:

argmin
w

n

∑
i=1

log
(

1 + exp−yi〈xi ,w〉
)
+ λ||w||22. (2.45)

2.6 Tree-Based Ensemble Methods 31

x1 > i

x2 < j x2 > k

x1 < ly=A y=B

y=C y=A

y=B

x1

x2

i

j

k

l

C

A
B

B
A

Figure 2.6 Left: A binary tree. Right: The corresponding partition of the input space.

to be different and complementary. If a deterministic decision tree learning algorithm is run on the same
data to generate many trees, all trees of the ensemble method would be identical. Tree-based ensemble
methods thus make heavy use of randomization to generate many different trees. This randomization
can take place at three different levels:

1. Samples: Variability can be introduced by building each tree on a randomly drawn subsampling
of the data points.

2. Features: Another option is to build the trees on different randomly drawn subsets of the features.

3. Decision threshold: When a tree is grown, each node k corresponds to a split. The decision to
send a sample towards the left or the right sub-tree depends on the decision threshold θk. This
value can also be selected more or less randomly.

Three different methods are introduced in the following subsections. They mainly differ in the type of
randomization they consider. The bagging technique uses the first one. The random forests use the two
first ones, on the samples and the features. The extremely randomized trees use the last two, on features
and split threshold value. These three methods are described next.

Bagging

Decision trees have been shown to offer a low bias in a large number of datasets, but a large vari-
ance (Breiman, 1996a). The idea of ensemble method for classification based on trees has been
introduced by Breiman (1996b) and is known as bagging. Bagging tends to produce classifiers more
robust than single trees. The diversity from tree to tree is induced by a resampling of data points.

Let us consider the bootstrap sample X∗, which is a random draw with replacement of n points
among (x1, x2, ..., xn). A number nTree of such bootstrap samples are drawn. An unpruned CART tree
is grown on each of these bootstrap samples.

To obtain a classification decision for a new point x from the bag of nTree decision trees, each
tree classifies x and the majority vote is the one that is finally kept.

36 Chapter 3. Feature Selection

given criterion. In this book, mainly two filters are considered: the Golub’s ratio, and the t-test, which
are described next. A third type of filters, based on information theory, is considered as well. However,
those information theoretic filters are not applied in the context of this book.

Other filters exist, like the χ2 (Liu and Setiono, 1995) or correlation-based feature selection (Hall,
2000). The χ2 statistics is designed for discrete variables, and gene expressions are continuous variables.
Discretization is required, which constitutes a loss of information. Correlation-based feature selection
can be univariate or multivariate. In both cases, it generally requires to compute a correlation between a
feature and a binary discrete class label, although correlation is a measure of linear dependence between
variables. Multivariate correlation-based selection methods favor groups of features highly correlated
to the target variable, and additionally showing a low correlation between them. Those approaches are
not used in this work.

The techniques presented in this section are specific filters, meaning that they use an extra infor-
mation on top of the data points x themselves. In this case, they use the class label y. Non-specific
filtering techniques (not making use of the labels) are also described and evaluated in Chapter 6. They
may be used as a quick preprocessing step.

Feature
Selection

Classification

Low Dimensional Data

Low Dimensional Data

Predicted Class

Figure 3.1 Feature selection: the filter pattern.

3.2.1 Golub’s Ratio

The Golub’s ratio is a univariate feature selection technique that has been used in one of the first suc-
cessful microarray study (Golub et al., 1999)1. Its principle is simple: the features to be favored are those
which behave the same way within each class, but differently in different classes. It is the ratio between
a difference of average values in two classes and the sum of variances in both classes. That is why it is
sometimes described as a signal to noise ratio. Its exact expression for feature j is:

S2N(j) =
|µj1 − µj2 |
σj1 + σj2

, (3.1)

where µji is the mean value of feature j across samples of class i and σji is the standard deviation of
feature j across samples of class i. This value can be computed for each feature j ∈ {1, ..., p}. The larger

1This technique is a standard approach that has not been originally proposed by Golub, but is known under his name in the
field of bioinformatics, due to this publication.

3.3 Wrappers 39

Feature
Selection

Classification

Low Dimensional Data

Low Dimensional Data

Predicted Class

Figure 3.2 Feature selection: the wrapper pattern.

Figure 3.3 Forward and backward approaches.

Wrappers can be subdivided in two main categories: forward and backward wrappers. The forward
wrappers start from an empty set of features, and run p times a given learning algorithm on each of
the p features individually. Performances are estimated for each option, and the single feature leading
to the optimal performance is selected. At a second step, p − 1 classifiers are built on the previously
selected feature and each of the p− 1 remaining features. Performances are once again estimated and
the feature leading to the best performance is added to the first one, and so on. The backward approach
works similarly, but starts from the full set of the p features and discards the single feature which
elimination leads to the best performances. Those two approaches are illustrated in Figure 3.3 and both
produce nested subsets of features. In that figure, forward selection starts at the bottom with an empty
set, and backward selection starts from the top with the full feature set.

The main motivation for forward selection is computational: starting from only one feature, the
first steps are fast to compute. The backward elimination approach is said to be less prone to miss
a relevant feature since all features are considered at the initial step. Both approaches are in fact
sub-optimal since only a small part of the feature subsets space is considered. Other heuristics than

40 Chapter 3. Feature Selection

Classification

Feature
Selection

Low Dimensional Data

Low Dimensional DataPredicted Class

Figure 3.4 Feature selection: the embedded pattern.

forward and backward approaches can be designed: forward-backward selection, simulated annealing,
genetic algorithms etc., which do not necessarily produce nested subsets anymore. Readers interested
in such local search approaches should refer to (Hoos and Stützle, 2004). Wrapper methods are
finer than the filter approaches because first, they make use of an information from the classifier (its
performance), and second, they consider groups of features jointly. By construction, those approaches
are multivariate. On the other hand, they are generally much more computationally expensive.

3.4 Embedded Methods

Embedded methods make use of much more information from a classifier: they make use of its very
structure, and the selection process occurs while training the classifier. Embedded methods are some-
times known as joint methods because they achieve two objectives at the same time. They are illustrated
in Figure 3.4. They are yet finer than wrappers, and generally not more computationally intensive.
That is why they are frequently preferred to them. The four next subsections describe four embedded
methods for feature selection: two based on the SVM (the recursive feature elimination and the AROM
methods), a method based on the logistic regression (the generalized lasso) and a last one based on ran-
dom forests. The three first methods can be formulated in the form of the loss & regularizer pattern.
This section ends with a discussion on a particular, maybe counterintuitive procedure to apply in the
context of embedded methods.

3.4.1 Recursive Feature Elimination

SVM are known to scale well to high-dimensional spaces, and have shown state-of-the-art performance,
as discussed in Chapter 2. Furthermore, a linear SVM offers the additional advantage that it contains
an embedded capability for feature selection. As a linear SVM essentially consists of a separating
hyperplane in the input space, the absolute values of the weights of each dimension in the hyperplane
can be regarded as the contribution (importance) of each dimension (feature) to the multivariate
decision of the hyperplane. As a result, these weights can be used to rank the features from most
important to least important, which is the rationale for the recursive feature elimination algorithm
(RFE, (Guyon et al., 2002)).

RFE adopts a backward elimination strategy to iteratively remove features. Starting from the full
feature set, a linear SVM is estimated from the training samples and features are sorted according to
the absolute value of their weight in the hyperplane. Subsequently the least important features are
eliminated and a linear SVM is re-estimated on the same samples but restricted to the remaining set of

44 Chapter 3. Feature Selection

(an extended version of this procedure can be found in (Weston et al., 2003)). The resulting algorithm
L1-AROM simply optimizes the 1-norm of w with iterative rescaling of the inputs, as illustrated in Al-
gorithm 1. A smooth feature selection occurs during this iterative process since the weight coefficients
along some dimensions progressively drop below the machine precision while other dimensions be-
come more significant. A final ranking on the absolute values of each dimension can be used to obtain
a fixed number of features. AROM stands for Approximation of zeRO-norm Minimization. Figure 3.5
illustrates why Problem (3.11) is a good approximation to the zero-norm minimization. This objective
is nearly flat on the whole space of parameters w except when a specific wj tends towards zero. The
objective is there strongly minimized.

Algorithm 1 The L1-AROM algorithm. The component-wise product is denoted by ∗.
Init:

w0 = (1, ..., 1), w0 ∈ Rp

k = 0.
Output: w̄
while Convergence not reached do

Solve:
w̄ = argminw ||w||1
subject to: yi〈xi ∗wk, w〉 ≥ 1

Update:
wk+1 ← wk ∗ w̄
k← k + 1

end while

Figure 3.5 2D-representation of the Zero-Norm Approximation by L1-AROM.

