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Microarrays for medical prognosis Experimental Design
Microarrays measure expression of tens of thousands genes from an Protocol 1: Real Knowledge Protocol 2: Simulated Knowledge

individual in a single experiment. 20%
(o)
Typical microarray data:
gene 1 gene 2 .. gene N | Pathology (class label) 80% (90%-10%)
sample 1 1.1 19 T1N 1

sample 2 9.1 9.9 To N 1o

90%

sample M | =1 zy2 .. ZMN YM

In our case, samples are samples, genes are features 200 Splits 90%-10%: 10 Splits 80%-20%:
1) Feature Selection on 90% with @ =10 1) Select 50 features on 20%
for a priori favored features and /8 =1 otherwise 2) On 80%, repeat 20 times:

ference 2) Train SVM on 90% on selected features - Select Features on 90% with /6=10 for the
| ] . _ 3) Test on 10% 50 selected features and (=1 otherwise.
Prognosis: Feature Selection and Classification Average BCR and Stability - Train SVM on 90% on selected features
Double aim: - Test on 10%
1. Identify a small subset of genes as pathology risks factors for further Average BCR and Stability
medical research or to evaluate treatment efficacy. . i
2. Train a classifier based on these genes to design a prognosis kit for the Comparison of PS-12-AROM, 12-AROM [1], RFE [8], Golub Index [3], and Random Selection.

given pathology.

Given the high cost of this technology, only some tens of experiments
may be led so N>>M, which is statistically a hard context for knowledge

Classification Performances
Unbalanced datasets: Balanced Classification Rate (BCR) instead of Accuracy:

Partially Supervised Feature Selection Stability

. . 2
Robustness of the selected dimensions. Kuncheva Index [7]: Stab =

K(K — 1)

Motivations

1. Expert knowledge: The PSFS algorithm may be used to incor- where K is the number of selection rounds (here, K = 200 or20), Sig is a signature (set of selected dimensions), [ is

poratg prior kno.wled.ge from field experts. For example, in a m|.croarray the size of the intersection of two signatures, Sis the size of the signatures and 1 is the total number of features.
experiment, a biologist may know/guess that some genes are likely more

relevant. Those will get a higher prior during optimization.

2. This technique increases stability in feature selection. Stability is a
desired property since the choice of the relevant dimensions in a problem Real Prior Knowledge

should not be influenced (too much) by varying the data sampling.

1

DLBCL, 2 known markers Leukemia, 3 known markers

3. Increasing classification performances: In some cases, this tech- PS-L2AROM —— | . | | | PS-L2ARON ——
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nique also increases classification performances. I
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PSFS Problem

Constrained zero-norm minimization approximation problem [1]:

Kuncheva Index
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Subject to: ¥i(w.x; +b) >1

Elegantly solved by an iterative algorithm called L2ZAROM. Weight Simulated K“OWIEdge

values corresponding to less useful features are rapidly vanishing. - — rOSTATE
The selection process can be stopped at convergence, or when PELOARO —— - - - PS-LZARGN —— - - - PS-L2ARON —— | | | PS-L2ARON —— |
sufficient sparsity is obtained. | - : | _ .

We propose to add a prior relevance 6 to each feature. The more
a priori relevant the feature j, the higher (3 :

Kuncheva Index
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A constrained gradient descent technique is applied:

1. At stepk =0, initialize 3 s.I. 63' > 1, Vj €{l,n} according to
prior information. Set Wk j = 5]-’ Vi e {1771} .

° 2 . [J [] 1 Il Il Il 1 1 1 1 Il Il Il Il 1 1 1
2. Solve mlnijHQ subject to rescaled margin constraints: ' 32 16 ' 32 16 ' 32 16 ' 32 16
w

Number of selected features Number of selected features Number of selected features Number of selected features
Y (W.(X; * Wi ) +b) > 1
3. Let W be the solution of step 2, setWgiq < Wi * W *x [3 C .
onclusions

4. Go to step 2 until convergence 1. PSFS allows to include prior knowledge on a priori important dimensions while letting the feature
selection procedure depart from it.

Note: * denotes the component-wise product. 2. PSFS naturally extends AROM methods [1].
2. Partial Supervision increases stability of selected features with respect to sampling variations.

3. Partial Supervision also improves classification performances in most cases.
4. Multivariate method: supervision of few dimensions influence the selection of other ones.
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